A Novel Neural Network Model for Joint POS Tagging and Graph-based Dependency Parsing

نویسندگان

  • Dat Quoc Nguyen
  • Mark Dras
  • Mark Johnson
چکیده

We present a novel neural network model that learns POS tagging and graph-based dependency parsing jointly. Our model uses bidirectional LSTMs to learn feature representations shared for both POS tagging and dependency parsing tasks, thus handling the feature-engineering problem. Our extensive experiments, on 19 languages from the Universal Dependencies project, show that our model outperforms the state-of-the-art neural networkbased Stack-propagation model for joint POS tagging and transition-based dependency parsing, resulting in a new state of the art. Our code is open-source and available at: https://github.com/ datquocnguyen/jPTDP.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An improved joint model: POS tagging and dependency parsing

Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...

متن کامل

Joint POS Tagging and Dependency Parsing with Transition-based Neural Networks

While part-of-speech (POS) tagging and dependency parsing are observed to be closely related, existing work on joint modeling with manually crafted feature templates suffers from the feature sparsity and incompleteness problems. In this paper, we propose an approach to joint POS tagging and dependency parsing using transitionbased neural networks. Three neural network based classifiers are desi...

متن کامل

Neural Joint Model for Transition-based Chinese Syntactic Analysis

We present neural network-based joint models for Chinese word segmentation, POS tagging and dependency parsing. Our models are the first neural approaches for fully joint Chinese analysis that is known to prevent the error propagation problem of pipeline models. Although word embeddings play a key role in dependency parsing, they cannot be applied directly to the joint task in the previous work...

متن کامل

Character-Level Dependency Model for Joint Word Segmentation, POS Tagging, and Dependency Parsing in Chinese

Recent work on joint word segmentation, POS (Part Of Speech) tagging, and dependency parsing in Chinese has two key problems: the first is that word segmentation based on character and dependency parsing based on word were not combined well in the transition-based framework, and the second is that the joint model suffers from the insufficiency of annotated corpus. In order to resolve the first ...

متن کامل

Incremental Joint Approach to Word Segmentation, POS Tagging, and Dependency Parsing in Chinese

We propose the first joint model for word segmentation, POS tagging, and dependency parsing for Chinese. Based on an extension of the incremental joint model for POS tagging and dependency parsing (Hatori et al., 2011), we propose an efficient character-based decoding method that can combine features from state-of-the-art segmentation, POS tagging, and dependency parsing models. We also describ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017